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The dense disdrometer
and rain gauge (RG)
network shown at left
was deployed in the
Southern Appalachian
Mountains (SAM) in
order to investigate, at
high resolution, the
microphysical structure
in this region throughout
time-scales from diurnal
to seasonal, as well as
provide measures of
precipitation DSD and
accompanying rain rate
at the surface to support
ground-based radar
retrieval algorithms
(Barros et al., 2014).
At right, subregional
yearly averages
recorded by the RGs
illustrate interannual
variability in this area.
The bar plot shows the
intra-ridge variability of
the inner subregion.

At right the diurnal cycle of 10 sensors
that had less than one week of missing
data for both months (Jan, in blue and
July, in red) combined are presented.
The parameters plotted are ratios of the
mass weighted mean diameter (Dm) and
its standard deviation (σm) to the
regional average. Calculations were
made for each 10s observation
classified by the PARSIVEL disdrometer
as liquid precipitation. DSDs were
computed from raw drop observations
using theoretical fall velocities including
a density correction. In each region, the
available stations show different effects.
In the west, P4 is ~1.5 km higher than
P7. PARSIVEL models 1 and 2 report
large differences at P12. Over all
regions, the Jan values show more
spread. In general, we expect
coalescence dominated regimes to show
lower σm values, but in fog, that value
may skew higher since the Dm value is
pulled towards larger drops by the mass
weighting. Below, the fog/rain frequency
occurrence for P4 (West) and P3 (Inner)
is plotted. The Dm curves at P4, which is

Below are DSDs measured at P9 (a location in the inner mountain region where the H2F2P
(Haze to Fog to Precipitation) trailer was deployed for an extended period from August 2014-
May 2015) and stratified by rain intensity (mm hr-1, as reported by the disdrometers).

Above - parameters of the particle size distribution observed by the PCASP (Passive Cavity Aerosol Spectrometer) when it was not
raining and the drop size distribution observed during rain events by the disdrometer, for the duration of the IOP at P22, during late
spring/early summer. Below - the same parameters observed during a winter month (Jan) at the inner mountain location (P9) where the
H2F trailer was stationed in that season. In the plots below, the PCASP was observing during both rain and non-rain conditions.
The evolution of the PSD � DSD is clearest in the total number concentration evolution. Midday peaks happen during both time periods
in the PCASP (stronger in the warm season). The evolution is longer in the summer (~8 hours) than in the winter (~4 hours). Measures of
the middle of the particle/drop size are higher in May-June than in January when smaller sizes are more dominant.

2. GPM DPR performance over the SAM

3. Climatology Study of Low-level Cloud and Fog in the 
SAM Using 8-year Satellite Observations and Modelin g 

commonly in the cloud deck, follow a similar
pattern to the fog frequency curves, shown
below, with an afternoon minimum and peak in
the early morning.

a) b)

The operational hydrological forecast during IPHEx-IOP in May-June 2014 was
dedicated to investigate the (flash) flood predictability in the southeast US on a daily
basis in a complete operational environment, focusing on 12 headwater catchments in
the Southern Appalachians with drainage size ranging from 71km2 to 520 km2 (see
map at left). The Duke Coupled surface-groundwater Hydrology Model (DCHM) was
utilized for flood forecasting combining QPFs (Quantitative Precipitation Forecasts)
provided by the NASA-Unified Weather Research and Forecasting (NU-WRF) model,
and multiple radar-based QPEs (Quantitative Precipitation Estimates) from NSSL
Q3/MRMS (Multi-Radar/Multi-Sensor) and NCEP/EMC StageIV rainfall products. The
QPEs were operationally used to produce hydrological hindcasts for the previous day.
The final states from those hindcasts were used as initial conditions in the hydrological
forecast for the current day. The operational forecast/hindcast results during the
campaign caught all flash flood events with large lead times of up to 6 hours. In
subsequent analyses, QPFs were improved through assimilating satellite observations
into the NU-WRF, ingesting both ground and satellite radar-based QPEs as well as
raingauge observations, and assimilating discharge observations into the DCHM using
three data assimilation techniques (i.e. EnKF, EnKS and AEnKF), for advancing flood
forecasting skills in the operational mode. The added value of this assimilation was
assessed for the different datasets (Tao and Barros, 2015). Figure 5a shows the
hydrological forecasts for the entire IPHEx IOP in the Upper Catawba (~ 515 km2).

Below: Fig 5.1 a) Operational 24-hour lead-time
streamflow forecasts using NU-WRF rainfall
forecasts. Initial conditions derived from hindcasts
using the NOAA Q3 (MW) rainfall; b) cumulative
rainfall for the May 15th event from different products.
Spatial resolution: NU-WRF and Q3 - 1 km; StageIV -
4km, and IMERG - 10km.

Right – Forecast/Hindcast results on May 15, 2014 using the original Q3 and the
adjusted Q3 data (Q3+_*). The grey lines are simulation ensemble members
using 50 rainfall replicates drawn from normal distributions within the 70% and
95% confidence interval (CI) of the regression model.
Below - Forecast results with the best* DA scheme identified for each basin (i.e.
respectively EnKS_AF15min_TW2hr for Basin01, EnKS_AF15min_TW1hr for
Basin02, and AEnKF_AF15min_TW2hr for Basin03) with short to longer lead
times (6hr to 15hr). The forecasting time is marked at the time-axis by the dot with
the same color as the forecast result. *This work suggests that to achieve optimal
skill, a “DA model climatology” study should be conducted.

Figure 2.2 – Histogram of FA and MD occurrences from DPR_NS NSR (left panel) and
TRMM PR 2A25 NSR (right panel) and respective raingauge observations.

Figure 2.1 – Left panel: Histograms of FA and MD occurrences for one year of GPM 2ADPR
near-surface rain rates (NSR) in the Southern Appalachians using the GSM PMM raingauge
network as reference as a function of the viewing angle (a), time of day (b) and season of the
year (c). Note the data are from total 135 GPM overpasses of normal scans (NS) in Ku-band
during 03/2014 – 03/2015, hereafter DPR_NS (see Fig. 2.2). Right panel: Histograms of FA
and MD occurrences for five years (2008-2013) of TRMM PR 2A25 V7 data in the Southern
Appalachians using the same raingauge network as reference as a function of the viewing
angle (a), time of day (b) and season of the year (c). Note mid-day light rainfall in the inner
region dominates the MD statistics, whereas the statistics of FAs are strongly influenced by
the presence of valley fog and orographic cap clouds in the inner region for all seasons (not
shown here, see detailed error characterization in Duan et al., 2015).

Preliminary error analysis of GPM 2ADPR using one year (03/2 014 – 03/2015)
of overpasses over the SAM suggests similar behavior to PR 2A 25 with
strong seasonality of False Alarm (FA) and Missed Detection (MD) (Fig. 2.1c),
though longer records are needed to consolidate the results . The seasonal
cycle shows that FAs are more concentrated during warm seaso n. However,
MDs display a seasonal trend with a large proportion occurri ng during the
cold season, which reveals its deficiency in detecting fog a nd low level
clouds frequently present in the fall and winter seasons. La rge viewing
angles (Fig. 2.1a) can also contribute to this error. Despit e the very limited
sample size so far, the histograms of rainfall rates in Fig. 2 .2 illustrate well the
ambiguity and uncertainty in light rainfall estimates from GPM DPR.

A 4-day WRF simulation (May 12 – May 16, 2014) during the IPHEx campaign was performed over the SAM, focusing on a rainfall
event with afternoon convection mixed with fog and stratocu mulus cloud. The evaluation of model results against satell ite
observations is aimed to expend the spatial coverage beyond narrow satellite sensor swaths and sparse temporal samplin g that
is inadequate to capture the diurnal cycle. The overarching goal is to infer a representation of seasonal and inter-annu al
variations of the vertical distribution of LWC and hydromet eors in orographic clouds and fog that vary spatially with la ndform
toward contributing to a better diagnosis of the model micro physical parameterization of seeder-feeder interactions.

A. Comparison of Merged Satellite Observations with Ground Observations
During the study period (June 2006 – September
2014), there are 177 (Daytime) and 169
(Nighttime) overpasses for CALIPSO and 140
(Daytime) overpasses for CloudSat (see the
study region in Figure 3.1). An assessment of
the combined data was conducted with
ceilometer cloud base height from ground
observations (ASOS): Asheville and Andrews
Airport, denoted as green triangles in Figure 3.1.

The contingency tables of 8-yr comparisons in
Daytime (D) and Nighttime (N) are shown in the
top panel. The figures in the middle panel show
the probability distribution of (a) the first layer
of CBHs detected from ground ceilometer
around satellite overpass times (~ 14:50 local
time) and (b) the combined satellite detections.

The climatology will be further developed
through integration with results from WRF high-
resolution simulations to aid in defining
meteorological and time-of-day constraints in
the interpretation of simulated satellite profiles
through Goddard Satellite Data Simulator Unit
(G-SDSU, Matsui et al., 2014).

B. Comparison of Satellite Observations to Model Simulatio ns using G-SDSU

Eastern Slopes Inner Region Western Slopes

We present a multi-year climatology of the Low-
level clouds (LLC) and fog with well-characterized
uncertainties over the SAM using the satellite-
based datasets (CALIPSO, CloudSat, and MODIS).
A merging methodology developed to synergize
CALIPSO and CloudSat data is intended to improve
the quality of climate records of low cloud
properties, with special emphasis on cloud base
height (CBH) and top microphysical properties.

Figure 3.1 – Region of study in the SAM.
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Note decreasing information value of raingauge observations for Basin 03, where there are fewer and less 
representative  gauges.

Note that 6-hour lead time is much larger than time to peak for these small headwater basins.

Figure 4.1: (a) Schematic of the
algorithm to use Ka (MRR) and W
(ACHIEVE) bands to classify low level
(LL) and deep structure(DS)
precipitation. (b) Space-time correlation
structure and average correlation for two
LL periods and a DS on June -11, 2014.

(a) (b)
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Detection Error
Misses ~ 0.75%
False Alarms ~ 4.4 %

Ambiguity
LL~ 20.8 %
DS ~ 5.2%

Figure 4.2: Probability Distribution Function (PDF) of: (a) Rainfall
Detection (Method 1 for Non-Rainy Conditions and Method 2 for
Rain events) (b) Rainfall Classification into Deep and Low-Level
Structure using Method 1 (Column Entropy)

• Time Period considered for analysis 
– IPHEx IOP (May 1 – June 15, 2014)

• Temporal resolution – 1 minute
• Vertical resolution:

• W-Band: 25 m (0.5 km to 8.5 km)
• Ka-Band: 50 m (50 m to 1.5 km)

• Method 2 is used for rain detection 
and Method 1 is used to classify the 
detected rain as low-level and deep 
structure.

• Ambiguity is around 20% for low-
level events.  Physical constraints 
will be incorporated next.

(a) (b)

Figure 4.3: Reflectivity profiles of (a)
CLOUDSAT CPR (b) TRMM PR
centered at (34N,84W) on February 4,
2010 14:58 LT. (c) Entropy compared
with STAGE-IV precipitation.

The algorithm was
applied to CLOUDSAT
CPR and TRMM PR
reflectivites from 2007-
2010. STAGE-IV rainfall
data were used for
identifying rainy events.
The CPR reflectivities
are consistent with
actual rainfall along the
overpass, but the TRMM
2A25 reflectivity data
were not able to capture
light rainfall structure
except around 50-75.

(c)

elevation

sensor season
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